Effects of climate change‐induced early flowering

Journal of Ecology author and Associate Editor Amy Iler tells us more about her new paper on the effects of climate change‐induced early flowering in aspen sunflowers…


As someone who has spent hours upon hours counting flowers at the Rocky Mountain Biological Laboratory (RMBL) to measure flowering phenology, I often wondered how the changes in flowering time that we were uncovering might affect the ability of these plant species to persist long-term (e.g., Iler et al. 2013).

The research of my co-author David Inouye shows that some plants experience severe frost damage to their flower buds when they flower too early in the spring (Inouye, 2008). Our new Journal of Ecology study shows that this frost damage is not as bad for populations as increases in mortality under climate change. But how did we figure this out?

1

Frost-damaged flower bud of the study species, Helianthella quinquenervis, due to earlier flowering under climate change. Frost-damaged buds do not develop into flowers.

To determine whether reproductive losses from earlier flowering could have negative effects on population viability, we combined long-term demographic data for Helianthella quinquenervis (aspen sunflower), a species that experiences frost damage when it flowers early, with long-term records of spring snowmelt dates, an important aspect of climate in the Western USA. Thanks to long-time RMBL resident billy barr, we know a great deal about how the snow conditions have changed at our study site.

2

billy barr has been measuring the depth and water content of snow in a permanent plot near the Rocky Mountain Biological Laboratory since 1975. billy, shown above, on a summer hike.

To strengthen the conclusions we could draw from our study, I wanted to compare results from the observational data with those from an experimental manipulation. I decided to ski out to the RMBL even earlier than usual to conduct a snow removal experiment with co-author Paul CaraDonna. Imagine shoveling snow at 2900m above sea level, one day after skiing 5 km with supplies on your back, all before you are acclimated to the high elevation. We were sore for days.

3

Snow removal experiment used to verify some of the observational demographic responses to earlier snowmelt dates. Lead author Amy Iler, shown above, in a snow removal plot.

Fortunately for us, the responses of the plants to experimental snow removal were consistent with the patterns in the long-term data: early snowmelt lead to increased frost damage and an increase in reproductive effort in the following year. Once we parameterized our population models with field data, we saw that Helianthella populations decline as snowmelt dates become earlier.

4

Helianthella blooming in a year with little frost damage, at one of our study sites at the Rocky Mountain Biological Laboratory in Gothic, Colorado, USA.

We also saw that early snowmelt had the biggest effect on population growth rates via increases in mortality, and much less so via frost damage. We think, and our data suggest, that Helianthella experiences water stress when snowmelt is early. Early snowmelt extends an early-season dry period, leading to increased water stress in plants (Sloat et al. 2015). Thus, in Helianthella, and probably in other long-lived perennials, earlier flowering under climate change is unlikely to pose a large threat to population persistence. Our study highlights the value of place-based research and long-term ecological data, something for which the RMBL is known. Thanks to a legacy of ecological research in the same location, we were able to examine for the first time the effects of climate change-induced earlier flowering on plant population growth rates.

Amy Iler, Chicago Botanic Garden and Northwestern University, USA 


Read the full paper: Reproductive losses due to climate change‐induced earlier flowering are not the primary threat to plant population viability in a perennial herb

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s